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A thermodynamically nonequilibrium fluid tends to return to its
stable equilibrium state owing to the dissipation and redistribution of
part of its energy as a result of individual particle collisions. However,
if the fluid deviates strongly from the state of thermodynamic equi-
librium, it is more advantageous for it to go over into a stare of ran-
dom motion, which permits the more rapid liquidation of the non-
equilibrium condition in the active development of turbulent transfer
processes exceeding in magnitude the classical processes of molecular
transfer. Finding the spectrum and energy level of the resulting tur-
bulent motion is a complex and, in some cases, mathematically im-
possible task. Therefore it is useful to have at least some restraints on
their magnitudes, in order to be able to estimate the role of turbulent
transfer processes in the pattern of evolution of the unstable state of
the fluid. As these conditions we shall take the conditions of stability
of the steady turbulent state of the fluid.

In accordance with ideas of L. D. Landau (1}, the
motion of a fluid in the developed turbulence regime
can be thought of as a certain quasi-periodic motion
and the physical quantities may be described in the
form of a sum of periodic functions with different
periods.1
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Here y¢ (x, y, z, t) is the vector of state, whose
components are parameters characterizing this
state (hydrodynamic velocity yl= vx, pressure pt=
= p, and 80 on), wy is the frequency, and q&l the phase
of the individual periodic motions.

For steady-state turbulence, the parameters
characterizing the flow depend on time; therefore
for small deviations from this state the coefficients
in the equations of hydrodynamics will depend on
time. These equations may be written in the form
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Here Huﬁ is a differential operator depending on
$%. We shall assume that the turbulence is uniform,
so that we can apply a Fourier transformation with
respect to the coordinates and reduce (2) to a system
of linear differential equations for the Fourier com-
ponents 6 (t)

'For finite Reynolds numbers the number of degrees
of freedom of turbulent motion n, represented here by
motions with n different periods, is also finite.

i

g DS IE he y orp ()

A, Kk
The behavior of the small perturbations ('up(ﬁ (t) in
time can be simply described in general form in
only two opposite limiting cases; 1} when the log-
arithmic decrement of the small perturhations is
considerably greater than the characteristic fre-
quencies of the turbulent motions; and 2), con-
versely, when the turbulent background oscil-
lates more rapidly than the small perturhations are
damped.

The second case is encountered in problems of so-
called weak turbulence. Since the latter problem has
been solved in its most general form (see, for ex-
ample, [2]), we shall confine ourselves to a detailed
analysis of the first case, when
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When (4) is satisfied, we can solve Eq. (3), as-
suming that the coefficients Hﬁf/ are constant in
time. Then the characteristic numbers A for solu-
tions of 6@1)513‘{ in the form ~ et are found from the
characteristic equation

|Hif— 18,087 = 0. (5)
Writing this out in explicit form
A ad™ eV Lay =0 (6)

we can apply the Routh-Hurwitz conditions [3] to it
directly; these are necessary and sufficient for the
real part of all the characteristic numbers to be
negative in virtue of the assumption concerning the
stability of the turbulent state.?

In the cases of practical interest, the coefficients
of Eq. (6) are real, so that all its roots are conjugate-
complex in pairs. Accordingly, all its coefficients
must be positive

a;>0,2,>0,..., ay>0. (7)

Stronger constraints on the coefficients are im-
posed by the Routh-Hurwitz condition, consisting in
the positiveness of the sequence N of first principal
minors of the determinant
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2 These conditions will be a criterion of asymptotic
stability in the sense of (4), which does not take into
account phenomena of the parametric resonance type,
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Apart from inequalities (7), (8), the sufficient
sign of the nondegeneracy of the matrix | Hkkofﬁ -

= A Byt 69B)| proposed by Hadamard [3], is also
useful; the matrix will be nonsingular if
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Here the prime attached to the summation sign
indicates that the diagonal term is omitted. On the
other hand, it is known that in developed turbulence
it is sufficient to increase the Reynolds number
only slightly for an additional unstable solution to
appear [1]. Therefore, there is always an eigenvalue
A = A_ with a very small negative real part Re A_
— 0. Then the above Hadamard condition is known
to be violated, i.e.,
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In the above analysis of the stability of the steady turbulent state
of a fluid, it was assumed that the energy distribution with respect to
the Fourier components of the turbulent motion was stationary. In fact,
this assumption is not always justified. Thus, for example, in the case
of Helmholtz instability it is more reasonable to assume a stationary
distribution of turbulent energy in the form of individual line vortices
and consider the stability of this stationary distribution [4]. Therefore,
in each specific case it is necessary to choose the more convenient
variables for describing the turbulence.

In conclusion, we note that, as a rule, the conditions of stability
of the turbulent state give only constraints from below on the ampli-
tudes of the pulsations and constraints on the phases of the amplitudes,
since the rate at which energy is pumped from the unstable modes is
determined precisely by the value of the latter (for certain assump-
tions concerning the phases of the amplitudes it is also possible to ob-
tain constraints on the amplitudes from above). In this sense it would
be useful to introduce thermodynamic considerations relating to the
minimum production of entropy [5], which, probably, would give a
constraint on the amplitudes from above. However, the introduction
of the concept of entropy always requires the introduction of a certain
ule of averaging in relation to the pattern of developed turbulence,
which cannot always be done rationally.

As an illustration of the method described above, we shail consider
the turbulent convection of an incompressible fluid in the gravitational
field g. This is described by the equations of continuity, motion, and
heat balance [6]}
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Here v, p, T, p are the hydrodynamic velocity vector, pressure,
temperature, and the density of the medium, respectively, B is the
superadiabatic gradient of the average temperature,T" is the temper-
ature pulsation, v, % are the coefficients of viscosity and thermal con-
ductivity. The pattern of developing turbulent motion will depend on
two dimensionless parameters: the Prandtl number P and the Reynolds
number R [7]
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Here d is the characteristic dimension of the convective layer.

Assuming that the Prandtl number P is small, we shall consider only
the limiting case of very high thermal conductivity

RP<EH1. (12)

The nature of the constraints imposed by the conditions of stability
o the turbulent background is quite well illustrated by the example of
two-dimensional motion in the plane x, y (this is observed, for ex-
ample, if a strong magnetic field H is applied along the z axis). In
this case, system (10) is simplified and in the Fourier representation
assumes the form
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From this we compute the coefficients of the characteristic
equation (6)
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The algorithm for computing the coefficients ay, a; ... is clear
from (14), (15). The summation in (14), (15) is carried out in the

. space of wave numbers
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We shall briefly consider the consequences of (14), (15) and con-
ditions (8), (9). The law of conservation of energy in the steady-state
turbulent regime

3 gy [0 2=0 (16)
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in conjunction with (14) requires that the spectral energy density | ug | 2
fall sharply in the direction of the shortwave end of the spectrum (es-
pecially in the region agk > 0). Condition (14) is identically fulfilled.
The Hadamard criterion is an estimate from below for the amplitude
of the longwave pulsations U, - Assuming exponential behavior of the
spectrum
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this criterion may be written in the form
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Note that, from the point of view of applications, it is precisely
the estimate of the pulsation energy ui /2 from below (18) that is
important, since, from above, it is bounded by the work increment
gaATd associated with movement of a macroscopic volume of di-
mension ~d through a distance ~d. Assuming that the uncompensated
temperature drop AT = Buy 7, (1 ~1/ %ko®), where Tk, is the dissipation
time for the temperatue gradient due to head conduction, we get [7]

lug I = % (2t (19)

Further, from inequality (15) and the first of the Routh-Hurwitz
conditions (8)

ayap — ag >0
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it follows that minimal constraints are imposed on the phases of the
three amplitudes aypay s , if the sum of these products in (15)
is assumed negative. In this case (15) takes the form
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Here, in accordance with (18), we neglect the first sum in (15)
and consider that the main contribution to the sum with respect to the
products of the three amplitudes is made by.the region of wave num-
bers k3> ¢y = |k — &'|, ¢, = | k" — k"|. This follows from the fact
that the spectral energy density lu qu is practically equal to zero for
g~ k Jmnx ~ {gap /%V)l/"

Estimating the degree of randomness of the phases of the amplitudes
with a certain coefficient
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we rewrite (20) in the form
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Note that the result does not contradict the work of E. Hopf [8],
who showed that a normal law of velocity distribution is incompatible
with the Kolmogorov spectrum and, consequently, & > /27" for
m = 5/3.

We obtain a numerical estimate for € by substituring in (22) a
certain spectral exponent m, using inequality (18) for an estimate of
]Ukol . Inequality (22) can also be used in another respect. Thus, if
we assume that the velocity distribution is strongly correlated, i.e.,
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that & ~1, then from (18), (22) we obtain a constraint on the ampli-
tude from above. Finally, we note that a more detailed investigation
of conditions (7), (8) would permit the strengthening of the inequali-
ties (18), (22).
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